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Consider a long and narrow basin where both the Coriolis force and
the dynamics in the cross-basin direction can be neglected. The bottom
of the basin is assumed to slope linearly from the head of the basin toward
its mouth, where the water is infinitely deep. The shape of the sea surface
in the steady-state solution of the ‘“wind set-down” problem is determined
by the balance between the wind which blows over the basin from the
shore seaward and the pressure gradient which results from the slope of
the sea surface. This study addresses the time-dependent problem encoun-
tered when the wind in the wind set-down solution suddenly relaxes and
the water gushes landward under the influence of the pressure gradient
force. We call this problem the ‘‘relaxation of the wind set-down.” The
difficulty in solving this problem is due to the moving singularity associated
with the ever-changing location of the point where the sea surface intersects
the sloping bottom. At this point the problem is only weakly hyperbolic,
thus only weakly well posed. We solve this problem numerically using two
completely different types of numerical solvers, finite difference schemes
and spectral methods. Both types of solvers are successfully tested on a
similar problem where the analytical solution is known. Both the MacCor-
mack finite difference scheme and the Chebyshev spectral method concurred
in their results, strongly suggesting the validity of the numerical solution.
Our results indicate that no wave breaking occurs and that the water will
slosh up and down the sloping bottom, similar to the behavior of a
nonlinear gravity wave. The spectrum of this wave motion consists of
peaks associated with the motion of regular gravity waves in a triangular
basin, as well as frequency beatings associated with the movement of the
singular point of the present problem. ©1997 Academic Press
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1. INTRODUCTION

1.1. General Background

Consider a long and narrow basin, such as the Gulf of Suez, the Gulf of Elat, or
Baja California, neglecting both the Coriolis force and the dynamics in the cross-
basin direction. The bottom of the gulf slopes linearly toward the mouth of the
gulf, where the deep water begins (see Fig. 1). The steady-state solution for the
flow in which the wind blows over the water from the short seaward, where the
vertically averaged water velocity is identically zero, results from the balance be-
tween the wind stress acting at the top of the water column and the vertically
integrated pressure gradient resulting from the slope of the sea surface [10]. The
uniform wind stress equally distributed throughout the entire water column is
directed seaward, and thus the slope of the sea surface, providing the balancing
pressure gradient, is directed landward. The thickness of the water column decreases
landward as a result of the bottom slope, causing the sea surface slope to increase
drastically at the point where the water depth vanishes at the shoreline. The resulting
shape of the sea surface in Fig. 1 is an implicit function of the distance from land
determined by the wind stress and the geometry of the gulf. Once this steady-state
solution is reached, it will continue to hold for as long as the wind speed and
direction blowing over the gulf remain unchanged. This problem is known as the
wind set-down problem, as it deals with the case when the wind lowers the sea
surface relative to its level state. It is the analog of the wind set-up problem
encountered when the wind pushes the water against the coast causing the sea level
to ascend above its level.

In this study we address the problem encountered when the water is initially in
the wind set-down steady-state solution, and the wind blowing over the water
suddenly calms down. At the moment directly preceding the cessation of the wind,

FIG.1. Schematic diagram of the gulf, which is taken to be a long and narrow channel with a linearly
sloping bottom.
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the sloping sea surface still provides a pressure gradient that accelerates the still
water toward the land. This acceleration is proportional to the sea surface slope,
and since this slope increases toward the land, the water closest to land will tend
to have greater velocity than the water further seaward. Thus the sea surface is
expected to “flatten,” at least for a short time, following the cessation of the wind.
We call this problem the ‘“‘relaxation of the wind set-down,” as it deals with the
return of the sea surface and water velocity from the steady-state solution of the
wind set-down problem back to the calm and level sea surface solution.

1.2. Time-Dependent Flow on a Linearly Sloping Beach

The inviscid and time-dependent flow of water on a sloping beach has been long
recognized as an important problem both theoretically and practically. Theoreti-
cally, the problem is challenging due to the moving singularity associated with the
ever-changing location of the point (or a line in the two-dimensional model) where
the sea surface intersects the sloping bottom. At this point of total vanishing water
depth, the equations cease to be strongly hyperbolic. From a practical standpoint,
a good grasp of this problem is crucial for planning for such catastrophic events as
storm surges climbing up a beach, erosion of beach fronts, and the landward march
of long gravity waves, such as tsunamis, pounding on the coast as a result of an
earthquake somewhere in the open ocean off the coast.

Stoker [11] was the first to address this problem by formulating the governing
nonlinear partial differential equations for the one-dimensional case of a simple
linearly sloping bottom. He analytically solved for the characteristic curves of the
equations and detailed occurring shock formations. Later in [4] problems for which
the analytical solutions were not feasible were numerically calculated, and the
evolution of the sea surface and water velocity were accurately predicted for a
similar dam-breaking problem. Further advances in the problem were obtained
when it was realized [3, 7] that in the special case of a linearly sloping bottom, the
nonlinear equations can be transformed into linear equations. The solutions of
these similarity transformations describe a periodic motion of the water up and
down the beach with no wave breaking and no dissipation of the wave motion
over time. For other types of initial perturbations, such as compressive waves, the
nonlinear waves which develop can break and form shocks. Thus shock formation
depends on the initial conditions, and there are no general criteria which can predict
whether or not shocks will be formed.

Some further progress in this direction was achieved in the same linearly sloping
bottom case where it was shown that the resulting integral equation can be solved
for arbitrary initial conditions by applying a Laplace or Hankel transformation to
the linearized version of the governing partial differential equations [12]. This,
along with a transformation similar to that in [3], made it possible to solve the
initial value problem for a certain class of initial conditions.

By applying finite difference schemes to the initial value problem associated with
an advancing bore, or more specifically a vertical ““‘wall” of turbulent water moving
ahead of a rather smooth and elevated sea surface, a direct numerical solution in
the context of tsunami modeling was simulated in [8]. The immediate vicinity of
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the singular point where the water depth vanishes is discarded and the governing
equation is integrated only up to a short distance behind this point. This solution
ignores the dynamics associated with the ““tip”” of the advancing bore and concludes
that these bores will slosh up and down the beach with no appreciable change in
this amplitude. The wave’s amplification amplitude approaching the beach, the
incoming tsunami distance, and the wave-breaking criterion were calculated in [9].

In this paper we solve the problem of “‘relaxation of the wind set-down’’ numeri-
cally and conclude that no wave breaking occurs. We also determine the frequency
of the waves.

1.3. Numerical Background

As mentioned above, the difficulty of this problem is due to the moving singularity
associated with the ever changing location of the point where the sea surface
intersects the sloping bottom. Furthermore, in the mathematical analysis one dis-
covers that the eigenvalues at this point are both real and equivalent, implying that
the associated Jacobian matrix is not diagonalizable. From elementary theory of
numerical analysis for hyperbolic equations, we know that this indicates that the
problem is only weakly hyperbolic at this point and therefore only weakly well posed.

We approached this problem using both finite difference schemes and spectral
methods. Finite difference methods are local methods that involve finding a solution
for a particular grid point in time and space based on the information provided by
its neighboring grid points. They are known to work very well for strongly well-
posed problems, but the results are inconclusive for weakly well-posed problems.
We employed two different finite difference schemes. The Lax Friedrich’s method
is first order in time and space and also handles shock discontinuities, but it suffers
from dissipation for long time solutions. The MacCormack method is second order
and has less dissipation, but will not perform well if there are shocks in the solution.
Since it became apparent that no shocks would be formed, we dropped the Lax
Friedrich’s scheme from our study and concentrated on the MacCormack
method instead.

Spectral methods are global methods obtained by expanding a function in terms
of orthogonal basis functions [6]. For the Chebyshev collocation method, f(x, ¢)
defined in the interval [—1, 1] is approximated by

fue,0) = Z ai (1) Ti(x),

where the basis functions 7y (x) are defined by
T (x) = cos(k cos™! x)
and the coefficients a,(¢) are

E f(x/’ t) Tk(xr)

a(t) = New &
j= ]
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0 1

FIG. 2. Initial condition n(x, 0). Note that an(1 — L(0), 0)/dx — —oo.

where ¢; = 1fori=1,.., N — 1 and ¢; = 2 for i = 0, N. The collocation points
x; are given by

x,~=cos%, j=0,..,N.
The Chebyshev points are placed more densely at the boundaries than in the interior
of the domain, implying that the Chebyshev method is particularly well suited for
problems where the solution varies drastically near the boundaries. The Chebyshev
spectral method will not work if discontinuities are present in the solution.

Our solution to the wind-set down relaxation problem is valid since both the
MacCormack and Chebyshev methods concur in their results. In fact these methods
are valid for any basin, and we use the example above because of its important
consequences.

2. THE RELAXATION OF THE WIND SET-DOWN MODEL

2.1. The Nonlinear Hyperbolic System

Consider the nondimensional hyperbolic system which describes the shallow
water dynamics of the linearly sloping gulf shown in Fig. 1, where u is the vertically
averaged velocity of the water and 7 is the sea surface height above still level

u=— +lu2
¢ n ) x

e = _(Ll(l —Xx+ n))x

(2.1)
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inside the domain
0=x=1- L@,

where L(f) < 1, the time-dependent distance from the shoreline to the point where
the total depth of the water vanishes, is defined by

L(t) = —n(1 — L(), 1). (2.2)

Denoting £, ii, %, and 7 as the dimensional quantities, the nondimensional quantities
are obtained (as shown in [3]), by defining x = £/, n = #/D, u = 4/\VgD, and
t= f\/g_D/l, where [ is the length of the gulf when the sea surface is level, D is the
total depth of the water, and g is the acceleration due to gravity (Fig. 1). The sea
surface height, n(x, t), is negative for receding water, whereas L(¢) is positive in
this case.

The water is initially at rest

u(x,0)=0 (2.3)

and the initial sea surface height is given implicitly by the steady-state solution of
the wind set-down solution described in [10]

—n(x,0)

x=m(x0)+1-y1-e"), (2.4)

where the parameter y, determined by the geometry of the gulf and the wind stress,
has typical value of

—0.02 =y = —001,

implying that n(x, 0) = 0. For D =~ 70 m and / = 350 km, the wind stress is
approximately 10~#m’/s’.

For this choice of n(x, 0), the distance from the shoreline to the point where the
total depth of the water vanishes is initially

L(0) = —yln(1 — 1/v).

The system (2.1), along with the initial conditions (2.3) and (2.4), describes the
dynamics of the water in the gulf when the wind calms down so that the pressure
gradient force, which was balaned by the wind stress, accelerates the water landward.
The left boundary condition for 7 is

n(0,1) = 0. (2.5)

This allows gravity waves to radiate in and out of the gulf through its mouth by
tilting the sea surface there, while still allowing the surface at x = 0 to remain
constant at the (infinitely deep) ocean even when water enter and leaves the mouth
of the gulf.
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Two separate cases are considered for the right boundary (shoreline). In the first
case we consider a moving domain, where the only requirement is regularity of the
solution at x = 1 — L(¢). Thus no boundary condition is given for u(1 — L(¢), t)
and the velocity is determined dynamically.

In the second simpler case, primarily studied to verify the results of the first case,
the domain is fixed by placing a wall at some point x = xq (e.g., xo = 0.95). In this
case, the right boundary condition

U(X(), t) = 0
is imposed, and L(f) now measures the depression of the water at the wall
L(1) = —m(xo, 1). (2.6)

The Jacobian of system (2.1) is

(v )
1l—x+m u

with eigenvalues

M=u+tV1i-x+n
M=u—V1-x+n

and corresponding Riemann invariants

s1=u+2V1i—x+mn+t
S,—u+2Vli—-x+n+t

System (2.1) is strictly hyperbolic for 1 — x + n = 0, butif 1 — x + 5 < 0, the
problem loses hyperbolicity and is no longer well posed. Furthermore, at x = 1 —
L(?) the eigenvalues A; = A, = u. Therefore the problem at the right boundary is
only weakly hyperbolic, and hence, even in the linear case, only weakly well posed.
This delicate boundary is the crux of the numerical problem.

System (2.1) also has an entropy function ®(u, 17) and a corresponding entropy
flux ¥(u, n)

2

2
u
Q) =3+ (1-x+m)5

Y(u,n) = u(n + 77;)(1 —x+ 1),
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such that

d(u, ), + ¥(u, n), = 0.

2.2. Transformation of System (2.1)

In this section system (2.1) is transformed in order to make it amenable for the
numerical solution. We ““freeze” the boundary of system (2.1) such that the moving
domain x € [0, 1 — L(¢)] translates to the stationary domain & € [0, 1]. This
transformation applies only to the case where L(¢) is defined by (2.2), since the
“wall”” problem is already defined in a fixed domain.

Defining

£= %L(t)
t=t
wi(£0) = (1 = x + n(x, 0)(1 = L()
a(£0) = (1 = x + n(x, 0)(u(x, 1) + (1 = L(0)),

2.7)

and substituting the transformation equations (2.7) into the system (2.1), yields

6(1)1 1
—t—— (L= Dy + 0,): =0
ot (1 _ L([)) (( ) 1 2)f (28)
8(1)2 1 , (1)% (1)% >
e - +—+— =
st T A= L) <(L E ot A L) =
where L' = L'(t) = dL/dt.
The initial conditions become
w2(§, O) =0
0=—21 14+ 1-y)@a- e*(%l(o)Jr(lfL(O))&l)/v).
1-L(0)
The parameter ¢ has not changed. The boundary conditions are
w1(0,7) =1 = L(1)
(1)1(1, I) =0 (29)

wz(l, [) =0.

L’ is obtained by first noting that the boundary condition implies that
(dwy/0t)(1, t) = 0 and then solving

1 ; _
a=L) (L'"é— oy + ) = 0.
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If we define
le = % (1, [)
¢ (2.10)
J
Dan =2 (1,1),
then L’ satisfies the equation
[ DwZ
L' =t Doy (2.11)

The same equation for L’ is obtained by solving (dw,/df) (1, t) = 0.

System (2.8) has an advantage over the original system (2.1) in that boundary
conditions are imposed on both variables w; and w,. This additional boundary
condition is a result of the implicit requirement that u(x, 7) is finite at x = 1 — L(¥).
On the other hand, a new variable to the problem, L’(¢), has been added. Although
L'(¢) is solved only at ¢ = 1, it is inherent in the flux throughout the entire domain.
Solving L'(¢) becomes the critical element of the problem.

The Jacobian of system (2.8) is

EL —t 1
1—-L(») 1—L(¢)
w3} + /(1 — L)) €L — 1 + 2wl |
1-L( 1-L()

with eigenvalues

@2 W1
L' —t+—+ ]
g (O} 1—L(t)

)\ =
1 1-L( 2.12)
r_ %_ [
L T NI
> 1— L) ’

implying again that system (2.8) will not be well posed for w; < 0, and also that at
& = 1 the system is only weakly well posed, since A; = A, = 0. The corresponding

Riemann invariants are
(0)) w1
=—=4+2 [—
T T INT =L
(0)) w1
=—-=2 .
2T N1 L0

(2.13)
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3. NUMERICAL METHODS

Both finite difference and spectral schemes were implemented for system (2.8)
and then the results were transformed back to the original variables u# and 7.

The standard MacCormack scheme was applied to the interior points of system
(2.8). At the boundaries w((1, 1) = wy(1, ) = 0, and (0, f) = 1 — L(r) were
analytically imposed, while w,(0, f) was numerically solved by a second-order extrap-
olation of the outflow Riemann invariant corresponding to the negative eigenvalue
at £ = 0. More specifically, the eigenvalues in Eq. (2.12) of system (2.8) satisfy
A > 0and A, <0 for ¢ € [0, 1). Therefore s, in Eq. (2.13) is the outflow Riemann
invariant at £ = 0. Thus

(0, 1) = w,(0, 7) [Zszmé =286 +2 Twi(%(?)]’

_ (A& 1) w1 (A, 1)

SZ(Afa t) - (Ul(Aé:, t) -2 1— L([)
_ m(2A8 1) |1 (2AE, 1)
S2(2A§, l‘) = wl(ZAf, t) -2 1— L(t) :

L’ was numerically solved with accuracy of O(A&)? by

where

, Dan(NAED)
L0 == (NAg 1y

where

30(NAED) _ 20/(N = DAED | w/((N = 2)A&0)

Doy(NAG ) == 1% A 2A¢

for i = 1, 2 and w;(NA¢, t) = w;(1, t) = 0. Finally, a second-order approximation
to L(t + Ar) was obtained by

L+ A = L(1) + %t (L'(t + A + L'(5)).

The spectral Chebyshev collocation method in space was implemented together
with a fourth-order Runge—Kutta scheme in time. The right boundary conditions
wi(1, 1) = wy(1, t) = 0 were imposed at each intermediate stage in the Runge—Kutta
time stepping and at the left boundary w,(0, ¢) was analytically imposed while the
Riemann invariants determined the value for w,(0, ) as described below.

Denote as o, and w,_ the calculated values for 1(0, 1) and w,(0, £) at each time
step. The inflow Riemann invariant s,(0, ) must be specified, while the outflow
Riemann invariant s,(0, f) cannot be specified, or the left boundary value will
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be overimposed. In system (2.8), the value of w,(0, t) is known, but the value of
(0, £) is not, so unfortunately the value of s, in Eq. (2.13) cannot be imposed. To
compensate, we calculated the value of s, in Eq. (2.13) by

(1)2’: w1 .
SZ_;Z_2V1—L®’

and then imposed w(0, f) = 1 — L(¢) to arrive at

o (1)2(0, t) _ (1)1(0, t)
52 010, 1) V1o L(ty

which can then be solved for w,(0, ¢).

The evaluation of the boundary points and the approximation of L'(f) and L(¢)
are more natural for the Chebyshev collocation method than for finite difference
methods, since they are implicitly evaluated in the method, rather than extrapolated
from other interior points.

o

4. VERIFICATION OF NUMERICAL METHODS: A TEST CASE

The suitability of the numerical schemes described in Section 3 to system (2.8)
and therefore system (2.1) was verified by studying a similar example for which
the analytical solution is available and the numerical calculations can be verified.

By slightly modifying the initial and boundary conditions of system (2.8), the
problem is reduced to a system of differential equations to which an analytical
solution can be found. The new initial and boundary conditions have no physical
meaning but provides a good “test” case in order to verify the applicability of our
numerical algorithms to the real problem. Recall the transformed system

1 ’ — Do W2)e =
(T Ly (O e o= (4.1)
) N S S
o+ i (COF Do+ 24 ) <0

where L'(f) =t — wzf/wu. Now suppose we are given the initial conditions

o = (1= L)1 - ¢)

Wy = 0
and the boundary conditions

_(A-L@y
(0.0 =""70)
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TABLE 1

L, Norm Errors for o, and w, Using the MacCormack Method for N = 20, 40, and

80 Points and Total Time ¢ = 1.0

N Lrw; Lrw, Time steps CPU time
20 8.9E-4 1.1E-3 25 0.02
40 3.3E-4 4.0E-4 50 0.04
80 1.4E-4 1.6E-4 100 0.10

3200 2.6E-6 2.9E-6 4001 115.7

_(1=LOY
0.0~ (=73
(1)1(1, t) =0
(,02(1, t) =0

An exact solution to system (4.1) system to the above conditions is

onen =G -9

w(&1) = %t(l - £)

t2
L(t) = L(O)(l - m)

System (4.1) was numerically solved using both the MacCormack finite difference
scheme and the spectral Chebyshev collocation method. For consistency purposes,
the numerical experiments were performed assuming no knowledge of w,(0, ?),
since v,(0, ¢) is unknown in system (2.8).

The numerical spatial order of accuracy is displayed in Table I while Table II
shows the numerical temporal order of accuracy of the MacCormack scheme solving
system (4.1). The first two columns are the L, norm errors of w; and w, and the
third column is the absolute error for the variable L(f). The drop to first-order

TABLE 11

Temporal Accuracy for the MacCormack Method for NV = 20 Points for Az Fixed

and Total Time ¢ = 1.0

At Low, Lrw, L(?) Total time steps CPU time
4.0E-2 8.9E-4 1.1E-3 49E-4 25 0.02
2.0E-2 3.2E-4 3.8E-4 1.5E-4 50 0.03
1.0E-2 1.3E-4 1.5E-4 5.0E-5 100 0.04
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TABLE 111
L, Norm Errors for o, and w, Using the Chebyshev Collocation Method for N = 20, 40,
and 80 Points and Total Time 7 = 1.0

N Lrw,; Lrw, Time steps CPU time
10 1.7E-07 2.2E-07 50 0.09
20 1.1E-08 1.4E-08 200 0.61
40 7.2E-10 9.0E-10 801 7.82
80 1.8E-10 2.3E-10 3200 114.8

accuracy in Table I1 is a result of not being able to calculate L"(¢) in the intermediate
step of the MacCormack scheme.

Tables III and IV display the numerical spatial and temporal order of accuracy
for the Chebyshev method, which obtained spectral accuracy. The first two columns
are the L, norm errors for w; and w, and the third column is the absolute error
for the variable L(¢).

The CPU times for solving system (2.8) are practically the same for N = 3200
for the MacCormack method and N = 80 for the Chebyshev method. This is easily
understood since the CPU time is proportional to the number of time steps
and for the MacCormack method At ~ 1/N while for the Chebyshev method
At ~ 1/N? The computational costs at each time step are marginal for both
methods. In this example, the MacCormack method yields good results and is
clearly less expensive. However, if greater accuracy is desired, then the Chebyshev
method is the better choice, implying that it may also be more suitable for
system (2.8).

5. THE NUMERICAL RESULTS

We solved system (2.8) for times up to 7' = 100 in nondimensional units using
80 grid points in the Chebyshev method and 3200 points in the MacCormack
method. Comparable results were obtained for the MacCormack and the
Chebyshev methods.

Most interesting is the evolution of L(¢), the time-dependent distance from the
shoreline to the point where the total depth of the water vanishes, or equivalently,

TABLE IV
Temporal Accuracy for the Chebyshev Collocation Method for N = 20 Points and
Total Time ¢ = 1.0

At Low, Lo, L(») Time steps CPU time
5.0-03 1.1E-08 1.4E-08 5.1E-09 200 0.61
2.5-03 6.7E-10 8.7E-10 3.0E-10 400 1.17

1.25-03 42E-11 5.4E-11 1.9E-11 800 228
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FIG.3. Time Series for L(f) using MacCormack and the Chebyshev methods. It is nearly impossible
to detect a difference in the results.

the receding distance of dry land. The MacCormack and the Chebyshev schemes
yield almost identical results, as shown in Fig. 3.

Since the graph of the time series of L(¢) in Fig. 3 exhibits oscillatory behavior,
we analyzed the data set of L(¢) for its frequency spectrum using a discrete fast
Fourier transform technique [1]. First, the time-averaged value L(f) was subtracted
from the data to form a time sequence p; of N points for N = 2 for some positive
integer m (here m ~ O(9)). Then the Fourier coefficients f} of the transformation

for k =0, ..., N — 1 were computed. The power spectral density d, for wavenumber
k is then simply

dk = |fk|27

corresponding to the nondimensionalized frequency, k/NAt, where At = T/N and
T is the total time.

Figure 4 displays the spectral power density for the Chebyshev and the MacCor-
mack methods. The largest signal is at 0.2, followed by smaller peaks at 0.45 and 0.7.

In Fig. 5 the spectral density of L(¢) is compared to the situation where the wall
is placed at xo = 0.95 and L(¢) = —n(x,, t) measures the depression of the water
at the wall. It is evident that the first and largest signal has nearly the same amplitude
but is slightly shifted in the ““wall”’ case. The effect of the wall on subsequent peaks
is much more drastic. We can therefore conclude that the first peak at the lower
frequency is associated with the basin’s geometry while the beating frequency which
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Spectral density graph of L(¢) using (a) Chebyshev and (b) MacCormack methods.
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Spectral density graph of L(¢) for no wall and for when a wall is placed at x, = 0.95.
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FIG. 6. Spectral density graph of L(¢) and u(3, ?).

determines the distance (i.e., frequency difference) to the secondary peaks is related
to the dynamics of the singular point at the boundary. The other effect of the
singular boundary is the slight increase in the height of all spectral peaks including

the first.

It is evident that u and 7 also exhibit oscillatory behavior at each spatial point.
The spectral peak at 0.2, which is so dominant in the time series of L(f), is clearly
dominant in both the velocity and the sea surface spectrum at the midpoint x =
1/2 as shown in Figs. 6 and 7. While the second peak of the spectrum of L(¢)
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characterizes the spectrum of 1(1/2, t), it is absent from the spectrum of u(1/2, ¢).
The fact that the behavior of 7(1/2, #) follows L(f) more closely than that of
u(1/2, t) is understandable since L(f) = —n(1 — L(¢), t).

The Chebyshev and the MacCormack methods also yielded similar results for
the spatial values of u(x, f) and n(x, f); however, there were small discrepancies
at the right boundary. The spatial results of u(x, 10), n(x, 10), u(x, 40), and
n(x, 40) are seen in Figs. 8 and 9. The structures vary considerably with time
and very sharp gradients persist near the right singular boundary.

We feel that the Chebyshev method provides better solution for several
reasons. First, the Chebyshev method is less likely to suffer from roundoff error
since fewer points are required to obtain a solution than in the MacCormack
method. Second, the Chebyshev method solved L’(f) inherently, while a less
natural extrapolation at the boundary was required for the MacCormack method.
Third, the L, error analysis for system (4.1) indicates that the numerical perfor-
mance of the Chebyshev spectral scheme is better suited to this type of problem.
However, the similarity of the results using both the MacCormack scheme and
the Chebyshev collocation method indicates the validity of the solution for
either method.

6. DISCUSSION

The results presented in the Section 5 point to the important finding that no
shocks form as the wind ceases to apply the stress at the surface of the gulf, allowing
the water to flow freely subject only to the pressure gradient force. In this sense,
the problem is similar to the classical dam break problem where a dam is released
and the water is allowed to flow freely down the pressure gradient. As no general
criterion is available to a priori determine whether such shocks will or will not
develop, our findings rule out the possibility that the nonlinear terms in the model
equations will general shocks.

The water will oscillate up and down the beach rather than develop discontinuities,
and since no viscosity was introduced in our model, these oscillations can persist
for a very long time. The frequency of these up-and-down oscillations equals the
speed of gravity waves propagating into the gulf from the open ocean divided by
twice its length. This speed is given, at any point x, and time ¢, by [1 — x +
1(x)]"? (and in dimensional form [g(D/l X (I — x) + m(x))]"?). Since the length of
our gulf is 1.0 for n = 0 = u, the value of 0.2 shown in Fig. 4 as the first peak in
the spectrum represents a weighted average of the speeds at the various points
along the gulf. This averaged frequency could not be determined from any other
considerations since it is not clear whether it is the speed or the water depth which
has to be averaged. The only way to calculate the speed in cases where the geometry
is not simple enough (e.g., uniform) is to perform direct numerical calculations
such as those presented in this work. This mode of water ocillations owes its
existence to the geometry of the gulf and not to the particular initial conditions we
used, as is evident from the comparison shown in Fig. 5, where the same peak at
a frequency of 0.2 prevails for the “wall” case as well as for the relaxation of the
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wind set-down case. The effect of the singularity associated with the latter manifests
itself in the beating frequency which determines the frequency difference between
the aforementioned main peak and its subharmonics which appear very clearly in

the spectrum.
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An interesting result which emerges from our calculations is that the water can
climb up and down the beach to distances which exceed the original distance, L(0).
The required water mass as well as potential energy are supplied, of course, by the

infinite ocean at x < 0.
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Our work lends credence to the approach in [8], where the problem of tsunami
propagation was solved on a sloping beach by ignoring the dynamics associated
with the singularity of the nose. As demonstrated in this study, neglecting the
singularity only affects the secondary peaks in the spectrum but has no effect on
the main peak there.

The application of our results to the Gulf of Suez, which have the same wind
stress and geometric parameters for the study of the steady-state solution described
in [10], implies that the water will run up the shore a dimensional distance of 14
km for an / = 350 km gulf (see Fig. 3). This will take place in about 30 h for D =
70 km after the wind stopped blowing. The typical water speed associated with this
behavior is about 2.5 m/s which is approximately 5 knots. These velocity values
are reasonable given the highly idealized assumptions made here, specifically that
the strong winds turn to a complete calm instantaneously, the slope of the bottom
of Gulf is perfectly linear for 350 km and no drag is being exerted by the bottom
on the overlying water.

Both numerical schemes employed here, the MacCormack finite difference
scheme and the spectral Chebyshev method, yield accurate results for our problem
in spite of the loss of strong hyperbolicity at the point of diminishing water. There
is some discrepancy of these solutions due to the numerical solution at the boundary.
The Chebyshev method probably yields more accurate results since it is a global
method and the approximation of the boundary values is built implicitly into the
scheme. On the other hand, the MacCormack scheme, which is local, extrapolates
information from neighboring points to approximate the solution at the boundary.
The inaccuracy of this approximation contaminates the neighboring points, which
in turn affects the accuracy at the boundary. Eventually this can affect the results
over the entire domain. Therefore many points are required for the MacCormack
scheme to ensure accuracy at the boundary. Far fewer points are required for the
Chebyshev method, making it less susceptible to computational roundoff error.
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